EXECUTIVE SUMMARY

Thank you for your continued hard work sampling **Chestnut Pond** this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years. As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the great work!

We encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from **May** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watcher kit, volunteers look for any species that are suspicious. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers immediately send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plant infestations, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers website at www.des.nh.gov/organization/divisions/water/wmb/exoticspecies/weed_watcher.htm.

OBSERVATIONS & RECOMMENDATIONS

DEEP SPOT

> Chlorophyll-a

Chlorophyll-a, a pigment found in plants, is an indicator of algal or cyanobacteria abundance. Algae are typically microscopic plants that are naturally found in the lake ecosystem. The measurement of chlorophyll-a in the water gives biologists an estimation of the algal concentration or lake productivity. Table 14 in Appendix A lists the current year chlorophyll-a data.

Figure 1 depicts the historical and current year chlorophyll-a concentration in the water column.

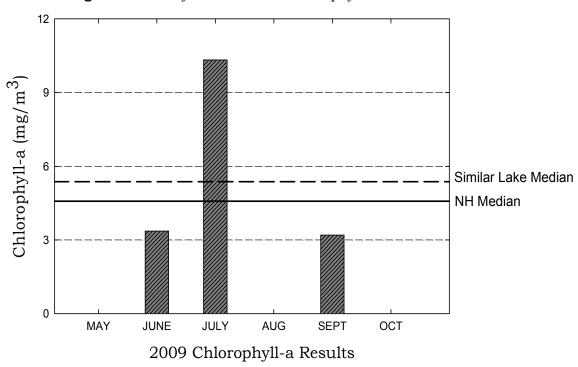
The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m^3 .

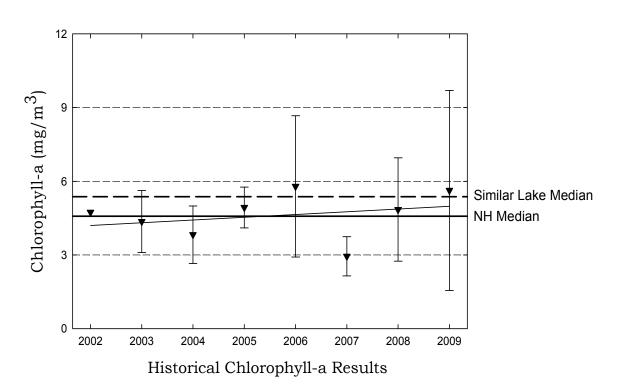
The current year data (the top graph) show that the chlorophyll-a concentration *increased sharply* from **June** to **July**, and then *decreased sharply* from **July** to **September**. The **July** chlorophyll-a concentration was **10.33 mg/m³**. Typically, chlorophyll-a concentrations above **15.0 mg/m³** are indicative of an algal bloom.

The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *greater than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix D.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *variable* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *fluctuated between* approximately 2.95 and 5.79 mg/m³ since 2002.

Please keep in mind that this trend is based on only *eight* years of data. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.


While algae are naturally present in all waterbodies, an excessive or increasing amount of any type is not welcomed. Phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes and ponds. Algal concentrations increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Increased Chlorophyll-a concentrations can also affect water clarity, causing Secchi-disk transparency to decrease (worsen) and turbidity to increase (worsen).


2009

Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

Chestnut Pond, Epsom

Figure 1. Monthly and Historical Chlorophyll-a Results

> Phytoplankton and Cyanobacteria

Table 1 lists the phytoplankton (algae) and/or cyanobacteria observed in the pond in **2009**. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed and their relative dominance in the sample.

Division	Genus	% Dominance			
Bacillariophyta	Asterionella	38.4			
Bacillariophyta	Rhizosolenia	29.3			
Bacillariophyta	Tabellaria	13.5			

Table 1. Dominant Phytoplankton/Cyanobacteria (June 2009)

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

> Secchi Disk Transparency

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. Table 14 in Appendix A lists the current year transparency data. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

Figure 2 depicts the historical and current year transparency **with and without** the use of a viewscope.

The current year **non-viewscope** in-lake transparency **decreased** from **June** to **July**, and then **increased** from **July** to **September**.

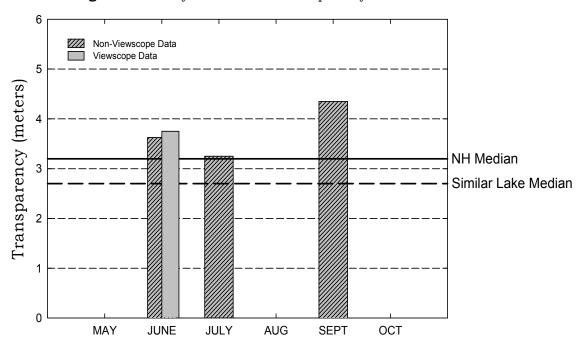
It is important to note that as the chlorophyll concentration *increased* from **June** to **July**, the transparency *decreased*, and as the chlorophyll *decreased* from **July** to **September**, the transparency *increased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases, and vice-versa.

The viewscope in-lake transparency was **slightly greater than** the non-viewscope transparency on the **June** sampling event. The transparency was **not** measured with the viewscope on the **July** or **September** sampling events. A comparison of transparency readings taken with and without the use of a

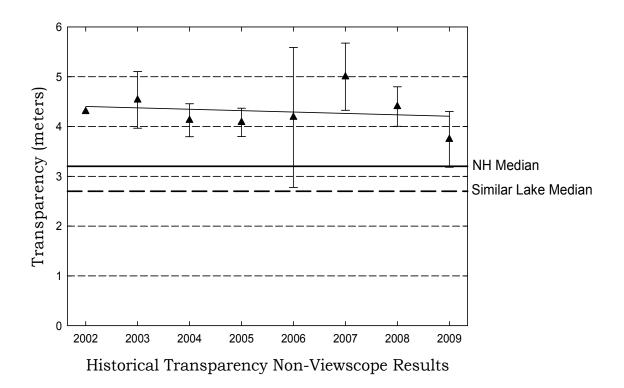
viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. In the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is *greater than* the state and similar lake medians; however is the lowest (shallowest) transparency since monitoring began. Please refer to Appendix D for more information about the similar lake median.


Visual inspection of the historical data trend line (the bottom graph) shows a **relatively stable** trend. Specifically, the transparency has **remained relatively stable ranging between 3.74 and 5.00 meters** since monitoring began in **2002**.

Please keep in mind that this trend is based on only **eight** years of data. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.


Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

Chestnut Pond, Epsom

Figure 2. Monthly and Historical Transparency Results

2009 Transparency Viewscope and Non-Viewscope Results

> Total Phosphorus

Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a pond can lead to increased plant and algal growth over time. Table 14 in Appendix A lists the current year total phosphorus data for in-lake and tributary stations. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

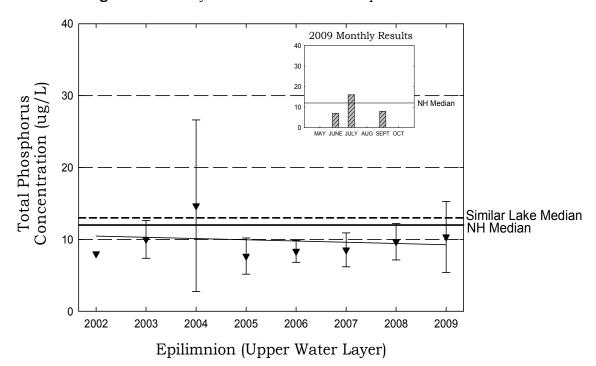
The graphs in Figure 3 depict the historical amount of epilimnetic (upper layer) and hypolimnetic (lower layer) total phosphorus concentrations; the inset graphs depict current year total phosphorus data.

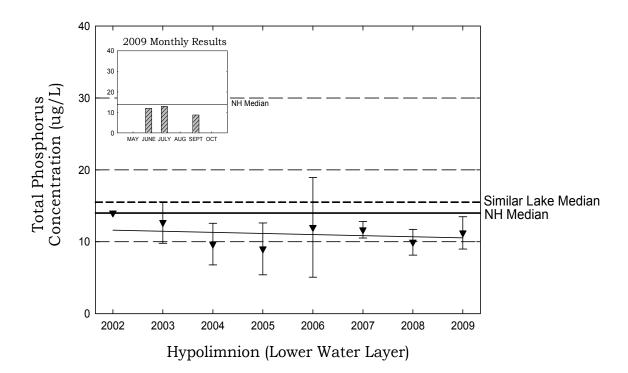
The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased* from **June** to **July**, and then *decreased* from **July** to **September**.

The historical data show that the **2009** mean epilimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Refer to Appendix D for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased slightly* from **June** to **July**, and then *decreased* from **July** to **September**.

The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Please refer to Appendix D for more information about the similar lake median.


Overall, visual inspection of the epilimnetic and hypolimnetic historical data trend lines shows a *relatively stable* phosphorus trend since monitoring began. Specifically the mean annual epilimnetic and hypolimnetic phosphorus concentration has *remained approximately the same* since monitoring began in **2002**.


As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

Chestnut Pond, Epsom

Figure 3. Monthly and Historical Total Phosphorus Data

> pH

Table 14 in Appendix A presents the current year pH data for the in-lake stations

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The pH at the deep spot this year ranged from **6.36 to 6.63** in the epilimnion and from **6.00 to 6.62** in the hypolimnion, which means that the water is **slightly acidic**.

Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH. The pH at the deep spot, however, is sufficient to support aquatic life.

Acid Neutralizing Capacity (ANC)

Table 14 in Appendix A presents the current year epilimnetic ANC for the deep spot.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The acid neutralizing capacity (ANC) of the epilimnion (upper layer) ranged from **3.5 mg/L to 4.4 mg/L**. This indicates that the pond is **moderately vulnerable** to acidic inputs.

> Conductivity

Table 14 in Appendix A presents the current conductivity data for in-lake stations.

Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity

2009

value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The **2009** conductivity results for the deep spot were **slightly lower than** has been measured **during the past few years**.

The record rainfall during the **2009 summer season** possibly diluted the ion concentration in surface waters throughout the watershed. Specifically, the significant summer rainfalls likely increased the flushing rate for many ponds allowing potential watershed pollutants to flush through the system and not concentrate in the stratified surface waters.

Also, the in-lake conductivity has *decreased slightly* (meaning *improved*) in the pond since monitoring began. Increases in conductivity typically indicate the influence of human activities on surface water quality. Septic system leachate, agricultural runoff, iron deposits, and road runoff which typically contains road salt during the spring snow melt, can each influence conductivity readings. This *decreasing* conductivity trend suggests the reduction of pollutants and erosion in the watershed. We hope that this improving trend continues!

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

Dissolved Oxygen and Temperature

Table 9 in Appendix A depicts the dissolved oxygen/temperature profile(s) collected during **2009**.

The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was greater than **100 percent** saturation between the **surface** and **three** meters at the deep spot on the **June** sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the

dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth to which sunlight could penetrate into the water column was approximately **3.6** meters on this sampling event, as shown by the Secchi disk transparency depth, we suspect that an abundance of algae in the epilimnion caused the oxygen super-saturation.

The dissolved oxygen concentration was *lower in the hypolimnion (lower layer) than in the epilimnion (upper layer)* at the deep spot on the **June** sampling event. As stratified ponds age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the pond where the water meets the sediment. When the hypolimnetic oxygen concentration is depleted to less than 1 mg/L, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as *internal phosphorus loading*.

The *lower* hypolimnetic oxygen level is a sign of the pond's *aging* health. This year the DES biologist collected the dissolved oxygen profile in **June**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **August** so that we can determine if oxygen is depleted in the hypolimnion *later* in the sampling year.

> Turbidity

Table 14 in Appendix A presents the current year data for in-lake turbidity.

Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity of the epilimnion (upper layer) sample was **slightly elevated** (1.41 NTUs) on the **July** sampling event.

The abnormally wet conditions this summer likely led to increased stormwater runoff entering the pond. Stormwater runoff can carry particulate matter and deposits it in the pond causing turbid conditions. Also, the chlorophyll-a concentration was 10.33 mg/m^3 in July indicating an abundance of algae in the pond.

TRIBUTARY SAMPLING

> Total Phosphorus

Table 14 in Appendix A presents the current year total phosphorus data for tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a detailed explanation of total phosphorus.

The phosphorus concentration in the **Inlet** sample on the **June** and **July** sampling events was **slightly elevated** (24 and 20 ug/L), however, the turbidity was **not elevated** (0.34 and 0.27 NTUs).

It had rained approximately **0.5 to 1.0 inches** during the **24-72 hours** prior to the **June** and **July** sampling events. Rain events typically carry phosphorus laden watershed runoff to tributaries. Phosphorus sources in the watershed can include agricultural runoff, failing or marginal septic systems, stormwater runoff, road runoff, and watershed development.

> pH

Table 14 in Appendix A presents the current year pH data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation of pH.

The pH of the **East Side Inlet** and **Outlet** ranged from **6.50 to 6.53 (> 6)** and is sufficient to support aquatic life.

The pH of the **Inlet** appears to be slightly acidic. This can be caused by the presence of humic, tannic and fulvic acids. Humic, tannic and fulvic acids naturally occur as a result of decomposing organic matter such as leaves. These acids may also cause the water to be tea colored. In New Hampshire the presence of granite bedrock and acid deposition also naturally lowers the pH of freshwaters.

> Conductivity

Table 14 in Appendix A presents the current conductivity data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a more detailed explanation of conductivity.

Overall, the conductivity has *remained constant* in the tributaries since monitoring began.

> Turbidity

Table 14 in Appendix A presents the current year turbidity data for the tributary stations. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation of turbidity.

Overall, **2009** tributary turbidity levels were *similar* to historical tributary turbidity levels.

> Bacteria (E. coli)

Table 14 in Appendix A lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation.

The *E.coli* concentration was **low** on each sampling event at each of the sites tested this year. We hope this trend continues!

If residents are concerned about sources of bacteria, such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Chlorides

Table 14 in Appendix A lists the current year data for chloride sampling. The chloride ion (Cl-) is found naturally in some surface waters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2009**.

2009

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled-out an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an **excellent** job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/a rd-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-03-42.pdf.

Lake or Pond – What is the Difference? DES fact sheet WD-BB-49, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-49.pdf

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-9.pdf.

NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20a.pdf

NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20b.pdf

NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20c.pdf

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-4.pdf.